

LA-UR-21-27836

Approved for public release; distribution is unlimited.

Title: Studying radiation hydrodynamics in laboratory astrophysics

Author(s): Coffing, Shane Xavier

Intended for: For my University of Michigan research group presentation (PhD

student)

Issued: 2021-08-05

Studying radiation hydrodynamics in laboratory astrophysics

Shane Coffing CSAC Review 10/10/2021

Special thanks to my host institutions

- Final year in the Applied Physics program at University of Michigan (expected by Spring 2022)
- Conducting thesis research at and in collaboration with Los Alamos National Laboratory
- Advisors: Carolyn Kuranz, R. Paul Drake, Chris Fryer

My goal is to help integrate astrophysics and HEDP experiment

- HEDP experiments enable scaled astrophysical studies
 - Experimentally explore difficult observations and theories
 - Mutually beneficial development (hydro, plasma, nuclear physics, etc,.)
 - A promising new field
- How?
 - Kelvin-Helmholtz instability (KHI) in cosmic filaments
 - Supernova shock breakout
 - The COAX experiment
- After each section, I'll tell you why we need to study these things

KHI in cosmic filaments

Does KH hinder the cold filamentary mass flows that feed galaxies? How does radiative cooling affect the KH?

Can an experiment elucidate this phenomenon?

Galaxies may acquire gas in three different ways

Hot mode

Spherical inflow compresses and forms a shock. Incoming gas gets shock heated.

Cold mode

Cold gas flows through filaments in free-fall. No shock forms, gas stays cold.

Cold in hot media

Filaments + accretion shock?

Background/filament interface is KH unstable

Galaxy simulations do not properly resolve

- accretion shocks, filament shocks
- Kelvin Helmholtz instability (KHI)

KHI may cause filament breakup before it gets to disc... even before the shock (somewhere between disc & virial radius).

The Omega EP experiment

Exp. shock frame is astrophysical analog

Radiative cooling affects KH, specific scaling

 $T_{\text{filament}} \sim 10^5 \text{ K}, T_{\text{foam}} \sim 10^6 \text{ K},$

Cooling is 10 times stronger in shocked filament!

This increases density in shocked layer and stifles KH.

Adiabatic case is BEST case scenario for KH to be effective.

Cooling rate, Z = mass fraction of elements heavier than He, Li

Broader Impact: Why a cosmic filament exp.?

- High impact theory that helps answer fundamental questions about our origin
- Galaxy formation is difficult to observationally explore
- Simulations can resolve filament formation or fine-scale hydrodynamic instabilities, **but often not both**
- HEDP provides a unique opportunity to investigate firsthand this hydrodynamic phenomenon

Shock breakout

How does radiation from a shock flow through irregular distributions of matter? Can this process provide us a unique spectral signature for supernovae? For other transient phenomena?

Breakout front turns clumps into emitters

- Radiative shock (~20-60 eV) heats up clumps
- Non-uniform heating, "bright" irregular flow structures
- Unique spectral signatures? Ingredients:

luminosity = f(photon energy, mass, opacity, gas temperature)

We've shown enhanced emission in first-look work

r = 1e13 cm

clump "strands" evolving

Clumped vs smooth run spectra, note high energy features

Single sphere studies can isolate the physics

- (Left) density/temperature of clumps.
- (Right) max temperature over time of heated clumps. Red line is an "average". Significant radiative shock heating of denser clumps.
- Single (r ~ 1e10 cm) clump, not enough heated mass for spectral signature.

The porous shell isolates physics in a different way

- Putting shell mass into clumps creates porous shell:
 - fixed optical depth
 - increased clump heating
 - porous flow
- May be produced by mass eruptions, convective/rad. instabilities, common envelope ejection ...
- We will look at an example of an inner wind shell from 2e12-4e12 cm, seeking extreme UV (EUV) temperatures

pure porous -> pure shell
same avg. optical depth

A pure shell SBO doesn't heat enough to EUV+

- LANL's Cassio code
- SN radiation transport
- Nearly solid shell
- 2D strip of a power-law density wind with a porous shell, for 10000 seconds
- 40 eV, 1e9 cm/s shock
- Density plot shows porous structure
- Temperature shows EUV producing temperatures in red
- This shell does provide enough heated mass!

Porous SBO flow creates hot EUV+ emission

- Short lived flow structures
- Radiative acceleration and mixing can shred the clumps, mixing also a cooling process
- With porous shell, EUV+ temperatures, similar features as pure clumped
- More research to be done to discern between spectra

Broader Impact: Why study shock breakout?

- Constrain supernova mechanisms and environments
- New early X-ray + UV transient satellite missions: SIBEX and UltraSat
- Help explain mechanisms for luminous SN and other transients
- Radiative shock through porous media in HEDP experiments: COAX,
 Radishock, and others

Hohlraum Cylindrical Radiative drive target shock

Radiation transport in COAX

Can we simultaneously verify three diagnostics and maximize their data usage? How well will our new spectral diagnostic infer a shock profile temperature? Is this a good platform for studying shock breakout?

The COAX experiment

- Omega-60 HEDP experiment
- Hohlraum drive sends radiative shock through a Ti doped foam
- Three target types: smooth or clumped dopants
- Ti is 15% by mass of target
- Three diagnostics: Dante, radiography, and spectroscopy

In some shots, we look at 0.6 ns drives, but all are roughly 1.0 ns long.

The 5% rise-to-fall time is 1200 ps with a 50 ps error.

The spectral window is 200 ps.

The radiography window is 333 ps.

Radiography is always taken 800 ps after the spectra.

Other radiograph timings are 3.3 ns and 2.3 ns.

Dante is our most qualitative tool

scaled) lasts 1 ns and measured flux (blue) peaks at the end of this drive before cooling.

The spectra backlighter for the spectra. We do not know the correct hohlraum T at time of spectra.

- 1) The error bounds are likely 20%+
- 2) Our hohlraum models produce a colder shock than expected!

Radiography is our most reliable tool

This provides the shock position and curvature and is the basis for all simulation tuning. The plot on the left shows a simulated radiograph and features/curves found reliably with edge detection. The right plot shows the positions of the shock during radiography and spectra as well as the spectral lineout positions.

Spectra is our most revealing tool

Multiple parameters can produce a "correct" shock position. Spectra comparison tells us our system may not be hot enough! Potentially a damning diagnostic for our modeling capabilities.

Investigating heating of Ti clumps in COAX

- 10 micron (left)
- Radiative front -> drastic heating
- Clump persists after 0.3 ns
- SN and IMC rad. transport
- Diffusion model

- Minimal heating
- Gone by 0.3 ns
- Similar to breakout phenomenon!

Broader Impact: Why develop COAX?

- By simultaneously comparing three diagnostics, maximizing data, we push our simulations to the extreme
- Develop our framework for rigorous UQ
- The new spectral feature can significantly constrain our models
- The COAX platform is a testbed for astrophysical processes (breakout, transport in inhomogeneous media)

Summary

- Developed the scaled theory for an experiment to study KH in filaments feeding galaxies and argued that we provide a best-case scenario
- Performed numerous parameter studies and theory development to understand the physics of supernova breakout
- Systematically modeled COAX to understand
 - diagnostic and simulation uncertainties
 - how to maximize our data
 - and how we can use COAX as a platform for studying radiation transport through inhomogenous media